
MECE E3028 Mechanical Engineering Laboratory II
Professor Qiao Lin

Spring 2022

Experiment 6: Raspberry Pi Object Tracking
Experiment

LABORATORY REPORT

Lab Group 6

Chengxi Wang

Justin Tucker

Kyrie Lorfing

Nico Aldana

Nikita Manjuluri

Will Hamilton

Yumna Alrefaei

Columbia University
Department of Mechanical Engineering

2/14/2022

Contents

Abstract 2

List of Figures 3

1 Introduction 4
1.1 Raspberry Pi . 4
1.2 Object Tracking Work Processes . 4
1.3 Significance of Study . 4

2 Theory 5
2.1 RGB . 5
2.2 HSV . 5
2.3 Conversion . 5
2.4 PID Closed Loop Control System . 5
2.5 Servo Motors . 5
2.6 Microprocessors . 6
2.7 Arduino vs Raspberry Pi . 6

3 Apparatus and Approach 6
3.1 Apparatus . 6
3.2 Approach . 7

4 Results and Discussion 9
4.1 Results . 9
4.2 Discussion . 10

5 Conclusions 11

6 Appendix 12

References 20

1

Abstract

In this experiment, we will use a Raspberry Pi microcontroller, a camera, and servo motors
to track circular objects in real time. We want to study what a Raspberry Pi is and how
it works, different color spaces and their conversion, how a PID control system works, and
how to control servo motors with Python code. To track the circular object, we will modify
the ball tracking algorithm given by the instructors to move the servo motor accordingly.
By changing the upper and lower RGB values in the code, we are able to adjust which color
the algorithm detects. The final step is using the given pan-tilt code to make sure that
the servo motors track the objects even as it moves out of frame according to the position
calculated by the color detection algorithm. Our results aligned with our expectations for
this experiment, and we were able to execute the code successfully.

2

List of Figures

1 The camera, Raspberry Pi, and pan-tilt mechanism used is shown. 7
2 The setup for the first part of the experiment, the object identification without

camera movement, is shown. 8
3 The setup for the second part of the experiment, the object tracking with the

camera movement, is shown. 9

3

1 Introduction

1.1 Raspberry Pi

The Raspberry Pi single printed-circuit-board (PCB) is a device that was designed to pro-
mote widespread computer science education by the Raspberry Pi Foundation [1]. Upgrades
to the Raspberry Pi made over the years gave the device the ability to use Python, and
the numerous systems and information libraries that are available in that language, making
it even more accessible, especially to engineering students. The device can function essen-
tially like a desktop computer when connected to a monitor, keyboard, and mouse. This is
possible because of the Raspberry Pi’s microcontroller, which contains a Central Processing
unit, Graphics Processing Unit, and 2GB of RAM. These components specifically enable the
Raspberry Pi to perform computationally expensive tasks, and therefore perform frame by
frame image processing on a live video feed.

1.2 Object Tracking Work Processes

The first step to successfully track circular objects of a specified color was to install the
OpenCV Python package onto an SD card running Raspberry Pi OS, which would take frame
data from the camera to analyze in real-time [2]. The code itself is responsible for converting
the input images to an HSV color space and detecting RGB values within a specified range.
The Raspberry Pi board itself is what allows the computer, OS (saved on a microSD card),
and camera to communicate. The camera became operational after physically connecting
it to the Raspberry Pi and enabling the hardware within the Raspberry Pi OS settings (as
well as installing one more package in the virtual environment). Any adjustments necessary
to accomplishing the different tasks assigned for this lab could be made by altering the code
saved on the microSD using the built-in Thonny editor, which would be executed manually
through commands in the Linux terminal.

1.3 Significance of Study

Learning how to use the Raspberry Pi to track objects from a live camera feed is important
to the development of our education as engineers. Because this experiment takes many
topics we have only studied separately so far, and combines them into a group exercise
with a practical application, it serves as another step towards being able to accomplish what
engineers do in the real world. For this experiment, we were required to break down complex
tasks into simple sequential steps. First, we had to figure out how to get a live camera feed,
then implement color-detection, then object tracking, until finally implementing the servo
functionality to physically move the camera. Face and object-tracking using cameras and
tilting motors are commonly used all over the world for industries such as security, research,
and consumer electronics. Using simple microcontrollers (not limited to Raspberry Pi) to
implement versatile algorithms in a language as common as Python is an extremely valuable
skill to have in mechanical engineering.

4

2 Theory

2.1 RGB

In RGB color space, each pixel stores 3 values that range from 0 to 255. R represents red,
G represents green and B represents blue. If a pixel is purely red, then it would have an
RGB value of [255,0,0]. Alternatively, if a pixel is white, it would have an RGB value of
[255,255,255]. RGB color space has 3 channels and 8 bits of depth [1].

2.2 HSV

In HSV color space, each pixel has 3 values, H from 0 to 360, S, from 0 to 1, and V from 0 to
1. H is hue, representing the angle of the color in the RGB color circle, where 0 degrees is red,
120 degrees is green, and 360 degrees is blue [1]. S is saturation, representing the intensity
of a color, where 0 is grayscale and 1 is natural color. V represents value, representing the
brightness of a color, where 0 is pure black and 0 is pure white. HSV color space has 3
channels and 8-bit depth [3].

2.3 Conversion

RGB and HSV color spaces can be converted as following:
R = R/255, G = G/255, B = B/255
V = max(R,G,B)S = (max(R,G,B)−min(R,G,B))/min(R,G,B)
-If max(R,G,B) = R,H = 60 ∗ (0 +G−B)/(max(R,G,B)−min(R,G,B))
If max(R,G,B) = G,H = 60 ∗ (2 +B −R)/(max(R,G,B)−min(R,G,B))
If max(R,G,B) = B,H = 60∗ (4+R−G)/(max(R,G,B)−min(R,G,B))G = H+360

if H < 0

2.4 PID Closed Loop Control System

The Proportional-Integral-Derivative (PID) closed loop control system follows a set order:
First, the input is sent to the controller. Next, the controller sends the control signal to
the processor. Then, the processor returns a measuring element to the controller which
is forwarded to the output. PID control will calculate the proportion, integration, and
derivative of the error, which is fed back to the input to make the necessary corrections.
Signals with large errors when making proportional and integration will be discarded before
making the derivative.

2.5 Servo Motors

Servo motors work as a type of feedback loop where a supplied current and voltage cause
a DC motor to spin at a certain speed. Within the motor, there is a tachometer that
measures whether or not the desired speed has been reached. If it hasn’t, it adjusts the

5

power accordingly. Programming servos requires keeping track of velocity, current, voltage,
and torque (in our experiment, we installed Python packages to help facilitate this) [4].

2.6 Microprocessors

A Raspberry Pi 3 board consists of an integrated CPU/GPU, 2 GB RAM, peripheral ports
(HDMI, USB, microSD), USB-A power input, and a ribbon cable connector for a camera
module. The OS is loaded onto a microSD and displayed through the HDMI output, which
the user can navigate by connecting an external mouse and keyboard [5].

2.7 Arduino vs Raspberry Pi

The Arduino and Raspberry Pi have different characteristics that can give either device an
advantage or disadvantage. The Arduino has a microprocessor that runs at 8-16 MHz and
2-8 kB built-in RAM. Then the Raspberry Pi has a microcontroller/CPU that runs at 1.5
GHz and has 2 GB RAM. The Raspberry Pi’s superior processing power allows it to run
a full OS with several programs in parallel—unlike the Arduino, which can only run one
program at a time. Additionally, the Arduino is easy to program using Arduino IDE, but it
must be connected to a separate computer running its own OS to flash programs onto the
board. On the other hand, the Arduino has a cost advantage with it being only $37, which
is significantly less than the Raspberry Pi 4 Model B’s $70 price point [1].

3 Apparatus and Approach

The apparatus in this experiment consisted of a few pieces of hardware, but mainly software
libraries in Python that would allow for camera support and image processing. Much of the
approach, then, involved adjusting the code. Since the software had to track different colored
balls, the most important part was ensuring that we could access the live video feed from
the Raspberry Pi GUI. We use the same camera for both the calibration of RGB values, as
well as the execution of the tracking code itself.

3.1 Apparatus

In terms of hardware, a microprocessor was needed for the CPU and GPU necessary to
process the highly complex objective of object tracking. In this scenario, a 2GB RAM
Raspberry Pi Model 4 was used to allow for frame-by-frame image processing, allowing the
CPU to detect colors and movement throughout the video [6].

For the second part of the experiment, involving the movement of the camera to keep
the object in the center of its frame, a device is necessary to allow for fluid movement of the
camera. For this, the Pan-tilt HAT kit was used, which contained two integrated servos and
a pan-tilt bracket system. The camera module, of course, connected to the Raspberry Pi as a
peripheral to allow for sensing of the object. Other necessary hardware components include

6

Figure 1: The camera, Raspberry Pi, and pan-tilt mechanism used is shown.

the monitor, keyboard, the connectors between the camera, Raspberry Pi, and monitor, and
the microSD card. This is shown in Figure 1 .

Much of the apparatus used in this experiment was software. First, in order to reformat
the SD card, the SD card formatter software was used to clear the SD card of data and
prepare it for the Raspberry Pi. To process the image, analyze the colors, and track the
object, OpenCV is used. This computer vision library allows for conversion between color
spaces and object identification and tracking. Once the Raspbian OS is installed to work
with the software and Raspberry Pi to run the image processing and object tracking software
[7].

3.2 Approach

The first step in completing the experiment is installing the software. In order to work
with the SD card, it must be reformatted and cleared. The OpenCV software should be
installed on the PC to perform the object tracking. Version four must be downloaded for
optimal compatibility with Python 3. Then, to access the operating system that supports the
Raspberry Pi and object tracking software, the Raspberry OS must be installed or updated.
Then, the camera that is to perform the object tracking must be connected physically,
through the connector, and in the software, by enabling the camera as an interfacing option.
Then, the camera is ready for a picture of the group to be taken [8].

Once the camera is operational, one can use the Linux command line to install the smbus
package in the virtual environment and re-enable the camera and the tilting mechanism.

Since the object tracking software is installed, as well as the servos and tilting mechanism
attached to the camera, the object tracking can begin. In the first part, the motion of the
red and green balls must be tracked without any movement of the servos. This should be
done by adjusting the upper and lower boundaries of the RGB values to fit the color of the
green ball. This should involve a guess and check method and lead to a better understanding

7

of the values. One might find, for example, that lighter colors are related to a higher RGB
value and darker colors are related to a lower value. The RGB values for the red ball, again,
through estimation, were found to have a lower limit of [0, 50, 50] and an upper limit of [10,
255, 255]. This part of the experiment is shown in Figure 2

Once this is completed, the code must be adjusted to track the movement of the ball.
The code in the objcenter.py file should already be formatted to track faces using the Haar
Cascade face detector, so this will involve adjustments for the OpenCV software to recognize
and analyze the colors of the moving balls [8]. Since the software converts the RGB values to
HSV values, the surroundings can be better separated from the object when processing the
frames. This involves editing the code that allows for the Pan-Tilt mechanism to work with
the face detection and adjusting the identifying HSV values to work for the different balls
and their colors. This part of the experiment is shown in Figure 3. Once this is done, one
can test the range of motion of the camera and the Pan-Tilt mechanism by moving the balls
throughout and past the range of the camera. Using this approach, one can gain a better
understanding of the RGB values, the Raspberry Pi, the camera and associated mechanism,
and the python code that controls the object detection and tracking operations [2].

Figure 2: The setup for the first part of the experiment, the object identification without
camera movement, is shown.

8

Figure 3: The setup for the second part of the experiment, the object tracking with the
camera movement, is shown.

4 Results and Discussion

4.1 Results

By the end of our experiment, we were successfully able to track colors within specified
RGB ranges and pan/tilt two servo motors to keep an object within the center of the frame.
We began by first tracking the path of a colored object across a still frame, keeping the
position of the center of the object as a queue of points updated at a set framerate. Then,
we implemented a PID control system to adjust the pan and tilt of the camera to keep the
center of the object as close to the center of the video frame as possible. In order to ensure
that our motors were able to adjust quickly and smoothly, we needed to tune the parameters
of our PID algorithm to suitable values. There are three values that need to be tuned: Kp,
Ki, and Kp. It is important to adjust the values by very small increments, since the “sweet
spot” of values is very narrow, and poorly-tuned values can cause the motors to “overshoot”
while compensating for the object motion leading to unnecessary oscillations and instability
in the tracking motion.

The foundation of our algorithm is based on the detection of RGB values within an HSV
color space. We accomplished this in a series of steps, beginning with converting the raw
input from the camera to a form that is easily parsed by the Raspberry Pi. In our code,
we begin by initializing the camera object, taking one frame at a time, blurring the image,

9

and converting to an HSV color space using built-in OpenCV functions. We apply a blur to
the image in order to reduce the complexity of the images and “smooth out” high and low
contrast areas. We were able to identify the upper and lower RGB bounds of our desired
color by running the range-detector script that is part of the imutils Python library. The
conversion to the HSV color space is necessary to simplify the colors within the image to
reduce the load on the processor. This allows the program to run with less latency, achieving
our goal of analyzing the image in real time.

The final code is given in the Appendix section and the final result of our experiment
was demonstrated to the Teaching Assistant.

4.2 Discussion

To trace the ball without enabling motors, the user must first define upper and lower bound-
ary RGB values to specify a color to detect [8]. (In our experiment, the values are tuned
to green.) The program then begins collecting each frame captured by the camera module
and converting the image to an HSV color space. Then, the program applies a mask to filter
out all the colors that are not encompassed by the previously defined RGB boundaries. If
contours within the color range are found, the program then computes the minimum size of
a circle that would enclose the contour. From there, the program overlays a circle over the
video feed and continuously records the x-y position of the center of each bounding circle. By
plotting lines through the list of positions, the output video feed appears to track a singular
object.

In the original pan tilting program, the objectcenter file detects faces. In this experiment,
we want to modify it so that it finds the center of a circle so that the motors can move
accordingly. To modify this program, we implement the part of the object tracing code
without enabling motors which find the center of circles of a specific color [2]. Specifically,
the program finds an object whose color falls in between the upper and lower limit of the
expected color, creates a circle contouring the object and finds its center.

To determine the upper limit and lower limit of our expected color, we searched the RGB
value for colors similar to our expected color. For example, the RGB value for light green
is (144,238,144) and that for deep green is (5,102,8) [3]. Once we have these two limits, we
test it on the code and check if the camera can trace the object. If the camera is able to
trace the object, we increase the proportion of G value in the lower limit and decrease the
proportion of G value in the upper limit. If the camera is not able to trace the object, we
decrease the proportion of G value in the lower limit and increase the proportion of G value
in the upper limit. Conversion from RGB to HSV is completed by the algorithm.

To stress test the code, we use our phone to increase the lighting on the object and
compare the performance of the camera tracking. We also place a background of similar
color behind the object and compare the tracking performance. If our algorithm fails in the
testing, we decrease the proportion of G value in the lower limit and increase the proportion
of G value in the upper limit.

The pan-tilt hat assembly allowed the camera to rotate 180 degrees from side-to-side and
tilt up and down to follow the object of interest. It had a delayed response to the movement

10

of the object due to the CPU delays in processing the code, but it managed to follow first
faces, then objects, while keeping the object generally within its frame, rather than at the
exact center of the screen. It did seem to accelerate slowly compared to the motion of the
object. There are three values that need to be tuned: Kp, Ki, and Kp. These must be
adjusted by small increments in order to find the precise value that will tune the movements
of the motor and compensate for the object motion. To do so, we followed the manual tuning
method as outlined in the given source [9].

There were a few software glitches and issues that had to be resolved in order to finish
the experiment. Primarily, many of the connectors were faulty. This includes the connection
between the camera and the Raspberry Pi as well as the connection between the monitor and
Raspberry Pi. This was fixed by simply changing the connectors. Similarly, the camera was
not connecting correctly to the CPU, causing the error that the camera was not “enabled”
to repeatedly come up. Once all the connections were working and in the proper place, it
was difficult to work with the servo since it was built incorrectly and jammed. This was
repaired by assembling the camera, servos, and connections and reassembling them in the
right order.

In the future, it may be necessary to slow the motion of the circles that the camera is
to track, since by the time the software registered the image of the circles on the screen,
they had moved out of range. Also, the hardware used and the OS itself should be updated
in order to avoid glitches and constant rebooting of the system. It would also be useful to
test the image analysis capabilities of OpenCV with simpler code in order to bypass large
glitches in software and focus on these capabilities.

5 Conclusions

The basis of this experiment was to first use a setup consisting of a Raspberry Pi micro-
processor/CPU, monitor, keyboard and mouse, and Python code (in conjunction with the
OpenCV package library) to create an algorithm that would track a colored ball on a screen.
Then, we set out to modify the original program to tilt and pan the input camera using
two servo motors. This would allow the program to ”track” an object and keep it in the
center of the video frame. We set out to complete this experiment to understand how a PID
control system works, as well as how to implement it in position-tracking code. We also had
to understand different color spaces and how to to convert between them. We took image
data from the camera and converted it into an HSV color space to allow the program to bet-
ter parse through the color values. The stationary ball-tracking was accomplished by first
loading the Raspberry Pi OS onto the board and connecting the necessary hardware. Next,
using the framework code provided in the experiment procedure, we were able to implement
an object tracking algorithm. The object tracking (with camera movement enabled) was
accomplished by using a PID control system. A PID system calculates error in real time and
feeds it back into its own input in order to adjust itself until the calculated error is zero. The
camera tracks the object’s center and then uses proportional, integral, and derivative means
to provide an accurate and responsive correction to a control function in real time. This

11

prevents wasted movements in the object-tracking movements performed by the camera and
leads to a smooth line-of-sight.

6 Appendix

The code can be described in a sequence of events beginning from enabling camera support
and ending with tracing a line between a collection of points.

from collections import deque

from imutils.video import VideoStream

import numpy as np

import argparse

import cv2

import imutils

import time

ap = argparse.ArgumentParser()

ap.add_argument("-v", "--video",

help="path to the (optional) video file")

ap.add_argument("-b", "--buffer", type=int, default=64,

help="max buffer size")

args = vars(ap.parse_args())

DEFINE BOUNDARIES

greenLower = (29, 86, 6)

greenUpper = (64, 255, 255)

pts = deque(maxlen=args["buffer"])

if not args.get("video", False):

vs = VideoStream(src=0).start()

else:

vs = cv2.VideoCapture(args["video"])

allow the camera or video file to warm up

time.sleep(2.0)

while True:

FRAME CAPTURE

frame = vs.read()

frame = frame[1] if args.get("video", False) else frame

if frame is None:

break

COLOR SPACE CONVERSION

frame = imutils.resize(frame, width=600)

12

blurred = cv2.GaussianBlur(frame, (11, 11), 0)

hsv = cv2.cvtColor(blurred, cv2.COLOR_BGR2HSV)

COLOR DETECTION

mask = cv2.inRange(hsv, greenLower, greenUpper)

mask = cv2.erode(mask, None, iterations=2)

mask = cv2.dilate(mask, None, iterations=2)

find contours in the mask and initialize the current

(x, y) center of the ball

cnts = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL,

cv2.CHAIN_APPROX_SIMPLE)

cnts = imutils.grab_contours(cnts)

center = None

CONTOUR DETECTION

if len(cnts) > 0:

CIRCLE COMPUTATION

c = max(cnts, key=cv2.contourArea)

((x, y), radius) = cv2.minEnclosingCircle(c)

M = cv2.moments(c)

center = (int(M["m10"] / M["m00"]), int(M["m01"] / M["m00"]))

if radius > 10:

DRAW CIRCLE

cv2.circle(frame, (int(x), int(y)), int(radius),

(0, 255, 255), 2)

cv2.circle(frame, center, 5, (0, 0, 255), -1)

PATH TRACING

pts.appendleft(center)

for i in range(1, len(pts)):

if pts[i - 1] is None or pts[i] is None:

continue

thickness = int(np.sqrt(args["buffer"] / float(i + 1)) * 2.5)

cv2.line(frame, pts[i - 1], pts[i], (0, 0, 255), thickness)

UPDATE FRAME

cv2.imshow("Frame", frame)

key = cv2.waitKey(1) & 0xFF

QUIT CONDITION

if key == ord("q"):

break

if not args.get("video", False):

vs.stop()

else:

vs.release()

cv2.destroyAllWindows()

13

To keep the center of the object when enabling motors, we use the code below.

import necessary packages

import imutils

import cv2

class ObjCenter:

def __init__(self, haarPath):

load OpenCV’s Haar cascade face detector

self.detector = cv2.CascadeClassifier(haarPath)

def update(self, frame, frameCenter):

greenLower = (29, 86, 6)

greenUpper = (64, 255, 255)

pts = []

convert the frame to grayscale

frame = imutils.resize(frame, width=600)

blurred = cv2.GaussianBlur(frame, (11, 11), 0)

hsv = cv2.cvtColor(blurred, cv2.COLOR_BGR2HSV)

COLOR DETECTION

mask = cv2.inRange(hsv, greenLower, greenUpper)

mask = cv2.erode(mask, None, iterations=2)

mask = cv2.dilate(mask, None, iterations=2)

find contours in the mask and initialize the current

(x, y) center of the ball

cnts = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL,

cv2.CHAIN_APPROX_SIMPLE)

cnts = imutils.grab_contours(cnts)

center = None

CONTOUR DETECTION

if len(cnts) > 0:

CIRCLE COMPUTATION

c = max(cnts, key=cv2.contourArea)

((x, y), radius) = cv2.minEnclosingCircle(c)

M = cv2.moments(c)

center = (int(M["m10"] / M["m00"]), int(M["m01"] / M["m00"]))

if radius > 10:

DRAW CIRCLE

cv2.circle(frame, (int(x), int(y)), int(radius),

(0, 255, 255), 2)

cv2.circle(frame, center, 5, (0, 0, 255), -1)

PATH TRACING

pts.appendleft(center)

14

check to see if a circle was found

if len(pts) > 0:

(x, y) = pts[0]

return the center (x, y)-coordinates of the circle

return ((x, y))

otherwise no circle were found, so return the center of the

frame

return (frameCenter, None)

The main code when enabling motors is shown below.

USAGE

python pan_tilt_tracking.py --cascade haarcascade_frontalface_default.xml

import necessary packages

from multiprocessing import Manager

from multiprocessing import Process

from imutils.video import VideoStream

from pyimagesearch.objcenter import ObjCenter

from pyimagesearch.pid import PID

import pantilthat as pth

import argparse

import signal

import time

import sys

import cv2

define the range for the motors

servoRange = (-90, 90)

function to handle keyboard interrupt

def signal_handler(sig, frame):

print a status message

print("[INFO] You pressed ‘ctrl + c‘! Exiting...")

disable the servos

pth.servo_enable(1, False)

pth.servo_enable(2, False)

15

exit

sys.exit()

def obj_center(args, objX, objY, centerX, centerY):

signal trap to handle keyboard interrupt

signal.signal(signal.SIGINT, signal_handler)

start the video stream and wait for the camera to warm up

vs = VideoStream(usePiCamera=True).start()

time.sleep(2.0)

initialize the object center finder

obj = ObjCenter(args["cascade"])

loop indefinitely

while True:

grab the frame from the threaded video stream and flip it

vertically (since our camera was upside down)

frame = vs.read()

frame = cv2.flip(frame, 0)

calculate the center of the frame as this is where we will

try to keep the object

(H, W) = frame.shape[:2]

centerX.value = W // 2

centerY.value = H // 2

find the object’s location

objectLoc = obj.update(frame, (centerX.value, centerY.value))

((objX.value, objY.value), rect) = objectLoc

extract the bounding box and draw it

if rect is not None:

(x, y, w, h) = rect

cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0),

2)

display the frame to the screen

cv2.imshow("Pan-Tilt Face Tracking", frame)

cv2.waitKey(1)

16

def pid_process(output, p, i, d, objCoord, centerCoord):

signal trap to handle keyboard interrupt

signal.signal(signal.SIGINT, signal_handler)

create a PID and initialize it

p = PID(p.value, i.value, d.value)

p.initialize()

loop indefinitely

while True:

calculate the error

error = centerCoord.value - objCoord.value

update the value

output.value = p.update(error)

def in_range(val, start, end):

determine the input vale is in the supplied range

return (val >= start and val <= end)

def set_servos(pan, tlt):

signal trap to handle keyboard interrupt

signal.signal(signal.SIGINT, signal_handler)

loop indefinitely

while True:

the pan and tilt angles are reversed

panAngle = -1 * pan.value

tltAngle = -1 * tlt.value

if the pan angle is within the range, pan

if in_range(panAngle, servoRange[0], servoRange[1]):

pth.pan(panAngle)

if the tilt angle is within the range, tilt

if in_range(tltAngle, servoRange[0], servoRange[1]):

pth.tilt(tltAngle)

check to see if this is the main body of execution

if __name__ == "__main__":

construct the argument parser and parse the arguments

ap = argparse.ArgumentParser()

17

ap.add_argument("-c", "--cascade", type=str, required=True,

help="path to input Haar cascade for face detection")

args = vars(ap.parse_args())

start a manager for managing process-safe variables

with Manager() as manager:

enable the servos

pth.servo_enable(1, True)

pth.servo_enable(2, True)

set integer values for the object center (x, y)-coordinates

centerX = manager.Value("i", 0)

centerY = manager.Value("i", 0)

set integer values for the object’s (x, y)-coordinates

objX = manager.Value("i", 0)

objY = manager.Value("i", 0)

pan and tilt values will be managed by independed PIDs

pan = manager.Value("i", 0)

tlt = manager.Value("i", 0)

set PID values for panning

panP = manager.Value("f", 0.09)

panI = manager.Value("f", 0.08)

panD = manager.Value("f", 0.002)

set PID values for tilting

tiltP = manager.Value("f", 0.11)

tiltI = manager.Value("f", 0.10)

tiltD = manager.Value("f", 0.002)

we have 4 independent processes

1. objectCenter - finds/localizes the object

2. panning - PID control loop determines panning angle

3. tilting - PID control loop determines tilting angle

4. setServos - drives the servos to proper angles based

on PID feedback to keep object in center

processObjectCenter = Process(target=obj_center,

args=(args, objX, objY, centerX, centerY))

processPanning = Process(target=pid_process,

args=(pan, panP, panI, panD, objX, centerX))

18

processTilting = Process(target=pid_process,

args=(tlt, tiltP, tiltI, tiltD, objY, centerY))

processSetServos = Process(target=set_servos, args=(pan, tlt))

start all 4 processes

processObjectCenter.start()

processPanning.start()

processTilting.start()

processSetServos.start()

join all 4 processes

processObjectCenter.join()

processPanning.join()

processTilting.join()

processSetServos.join()

disable the servos

pth.servo_enable(1, False)

pth.servo_enable(2, False)

19

References

[1] Columbia University. Rasberry pi object tracking experiment: Description, 2022.

[2] Juan Cruz Martinez. Object tracking with opencv. LCS - Learn and grow with us, Oct
2021.

[3] Programming Design Systems. Color models and color spaces.
https://programmingdesignsystems.com/color/color-models-and-color-
spaces/index.html.

[4] Jameco Electronics. Servo Motors. https://www.jameco.com/jameco/workshop/howitworks/how-
servo-motors-work.html.

[5] Raspberry Pi Configuration. https://www.raspberrypi.org/documentation/configuration/camera.md,
2012.

[6] Py Image Search. Rapberry pi documentation.
https://www.pyimagesearch.com/2019/04/01/pan-tilt-face-tracking-with-a-raspberry-
pi-and-opencv/.

[7] Raspberry Pi OS download. https://www.raspberrypi.org/downloads/raspbian/, 2012.

[8] Mechanical Engineering Lab II. Installation and Procedure of Rasberry Pi Experiment.
Columbia University, 2022.

[9] Pid controller. https://en.wikipedia.org/wiki/PIDcontrollerManualtuning, Feb2022.

20

	Abstract
	List of Figures
	Introduction
	Raspberry Pi
	Object Tracking Work Processes
	Significance of Study

	Theory
	RGB
	HSV
	Conversion
	PID Closed Loop Control System
	Servo Motors
	Microprocessors
	Arduino vs Raspberry Pi

	Apparatus and Approach
	Apparatus
	Approach

	Results and Discussion
	Results
	Discussion

	Conclusions
	Appendix
	References

